Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38334578

RESUMO

This work presents the synthesis of CuO-NiO nanocomposites under different synthesis conditions. Nanocomposites were synthesized by merging a green synthesis process with a microwave-assisted hydrothermal method. The synthesis conditions were as follows: concentration of the metal precursors (0.05, 0.1, and 0.2 M), pH (9, 10, and 11), synthesis temperature (150 °C, 200 °C, and 250 °C), microwave treatment time (15, 30, and 45 min), and extract concentration (20 and 40 mL of 1 g saponin/10 mL water, and 30 mL of 2 g saponin/10 mL water). The phases and crystallite sizes of the calcined nanocomposites were characterized using XRD and band gap via UV-Vis spectroscopy, and their morphologies were investigated using SEM and TEM. The XRD results confirmed the formation of a face-centered cubic phase for nickel oxide, while copper oxide has a monoclinic phase. The calculated crystallite size was in the range of 29-39 nm. The direct band gaps of the samples prepared in this work were in the range of 2.39-3.17 eV.

2.
Chem Mater ; 35(20): 8371-8381, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901147

RESUMO

The dependence on lithium for the energy needs of the world, coupled with its scarcity, has prompted the exploration of postlithium alternatives. Calcium-ion batteries are one such possible alternative owing to their high energy density, similar reduction potential, and naturally higher abundance. A critical gap in calcium-ion batteries is the lack of suitable cathodes for intercalating calcium at high voltages and capacities while also maintaining structural stability. Transition metal oxide postspinels have been identified as having crystal structures that can provide low migration barriers, high voltages, and facile transport pathways for calcium ions and thus can serve as cathodes for calcium-ion batteries. However, experimental validation of transition metal oxide postspinel compounds for calcium ion conduction remains unexplored. In this work, calcium manganese oxide (CaMn2O4) in the postspinel phase is explored as an intercalation cathode for calcium-ion batteries. CaMn2O4 is first synthesized via solid-state synthesis, and the phase is verified with X-ray diffraction (XRD). The redox activity of the cathode is investigated with cyclic voltammetry (CV) and galvanostatic (GS) cycling, identifying oxidation potentials at 0.2 and 0.5 V and a broad insertion potential at -1.5 V. CaMn2O4 can cycle at a capacity of 52 mAh/g at a rate of C/33, and calcium cycling is verified with energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) and modeled with density functional theory (DFT) simulations. The results from the investigation concluded that CaMn2O4 is a promising cathode for calcium-ion batteries.

3.
RSC Adv ; 12(9): 5080-5084, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35425589

RESUMO

Optimized photocatalytic conversion of CO2 requires new potent catalysts that can absorb visible light. The photocatalytic reduction of CO2 using rhenium(i) has been demonstrated but suffers from low turnover. Herein, we describe a [Re(CO)3(1-(1,10)phenanthroline-5-(4-nitro-naphthalimide))Cl] photocatalyst, which when combined with the sacrificial donor 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole, results in selective production of formic acid and a high turnover number of 533 and turnover frequency of 356 h-1. Single-crystal X-ray diffraction and DFT studies are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...